

12th International Planetary Probe Workshop Hyatt - Cologne, Germany

Entry Vehicle Backshell Wake Flow Investigation at Mach 5 using Additively Manufactured Models

Tom Fisher

&

Dr K. Smith & Dr M. K. Quinn

The University of Manchester School of Mechanical Aerospace and Civil Engineering

June 19th 2015 #8109

Introduction and Motivation

Why was this investigation proposed?

- Continuation of Planetary Science Entry Probe Missions for current and future exploration
- Maximise previous entry technology and prove developing technologies to flight status

What is the rationale for experimental testing?

- Experimental data is needed to support CFD uncertainty reduction and to reduce hardware conservatism
- Using rapid prototyping allows the potential for a flexible experimental campaign
- Testing multiple versions of the model in a short lead time compared to conventional metal models
- Flexibility to place flow interrogation or seeding ports anywhere in the model surface

What are the benefits?

Greater potential science payload due to reduced entry system mass and a high return on investment

Hypersonic Facility

High Super Sonic Tunnel (HSST)

HSST Tunnel Test Section Overview

Forces and Flow Visualisation model

Test Conditions:

- Mach Numbers Four to Six achievable
- Maximum Reynolds number 16 million per meter
- Test Time ~ 6.5 seconds

Flow Diagnostic Equipment:

- Three component Sting and Pressure Sensing
- Z- Topeler Schlieren and Shadowgraph system, PSP, Flow Seeding PLIF, IR Thermography

Additive Manufacturing for Testing

Previous Work:

- Ad-hoc hypersonic models tests by Danehy et al.
- Multiple failures but no best practice implemented This Investigation:
- Building on these tests using a commercial printer Early failures & issues:
- Poor surface finish, part distortion, pressure channel blockage

Danehy et al. test failures

split shell complex & distortion

fully printed channels complex & blockages

surface distortion on support structure face

Additive Backshell Manufacture

Current Manufacturing Process:

- 3D cad &.stl file _ (5 hours)
- Printing (3 hours)
- → UV Cure (3-6 hours)
- Final
 Finishing
 (1-3 hours)
- Tunnel Testing (15 mins/run)
- Developed an initial best practice guide for printing tunnel models
- On-going refinement of manufacture and finishing process during test campaign
- Further investigations to find model repeatability and survivability points
- Investigate application of thermal coatings and PSP paints to SLA printed models

Complete Model Preparation

From print, to assemble and testing in 12 hours

The University of Mancheste

Experimental Runs

Schlieren and Shadowgraph Results

Experimental Runs-2

Sting Force Data

Lift/ Alpha

Drag/Alpha

Test Conditions:
Mach 5
Model Reynolds
Number: 500,000
Total Pressure: 520kPa
Total Temperature: 310K

Post testing

Results and Lessons Learnt

- Successful testing of entirely 3D printed models is possible with existing facility
- Initial test model was able to survive multiple runs (30+)
- Further work to explore model survivability at higher total temperatures
- Investigation to model survivability at higher angles of attack
- Obtain a full set of force, flow visualisation and pressure results
- Static pressure models were successfully printed with integral flow passages and are awaiting testing

Future Work

- Compile a best-practice guide
 - What effect does UV cure time have?
 - Can surface finish be improved?
 - How can PSP and flow seeding tests be integrated to the model?
 - Future research study to investigate further vehicles experimentally coupled with CFD comparison and validation

Thank You- Questions?

References:

- ADEC (2006) 'Arnold AFB conducts successful testing of Mars entry vehicle' [Online] < http://www.afmc.af.mil/news/story.asp?id=123024093 > [20 May 2015]
- Edquist, K. T., Dyakonov, A., Wright, M. J., Tang, C. (2007) 'Aerothermodynamic Environments Definition for the Mars Science Laboratory Entry Capsule'. 45TH AIAA Aerospace Sciences Meeting and Exhibit. 8-11January 2007, Reno, Nevada.
- NASA (2015) 'artist's concept of NASA's Mars Science Laboratory spacecraft with the upper atmosphere of Mars during entry, descent and landing' [online] < http://www.nasa.gov/topics/aeronautics/features/medli.html > [20 May 2015]
- NASA (2012) 'High-Resolution Self-Portrait by Curiosity Rover Arm Camera' [online] <
 <p>https://www.nasa.gov/mission_pages/msl/multimedia/pia16239.html#.VVyLG_n6Eqw [20 May 2015]
- P. M. Danehy, D. W. Alderfer, J. A. Inman, K. T. Berger, G. M. Buck and R. J. Schwartz, "Fluorescence Imaging and Streamline Visualization of Hypersonic Flow over Rapid Prototype Wind-Tunnel Models," National Aeronautics and Space Administration, Hampton, 2008.
- http://formlabs.com/products/form-1-plus/

Backup-1

Sting effects on flow stability

No sting extension at α =10°

With sting extension at α =10°

Backup-2

Tunnel Conditions

Tunnel Conditions Pdome= 140 psi Ptotal= 545kPa

Tunnel Conditions Pdome= 165 psi Ptotal= 630kPa